ANP and CNP activate CFTR expressed in Xenopus laevis oocytes by direct activation of PKA.
نویسندگان
چکیده
CONTEXT Acting through different receptors, natriuretic peptides (atrial natriuretic peptide [ANP], brain type natriuretic peptide [BNP] and C-type natriuretic peptide [CNP]) increase intracellular cGMP, which then stimulates different pathways that activate fluid secretion. OBJECTIVE We used two-electrode voltage clamping to define the dominant pathway that is employed when natriuretic peptides activate cystic fibrosis transmembrane conductance regulator (CFTR) in the Xenopus oocyte expression system. Natriuretic peptides could activate CFTR by 1) cGMP cross-activation of protein kinase A (PKA), 2) cGMP activation of cGMP-dependent protein kinase II, 3) cGMP inhibition of phosphodiesterase type III (PDE3), or 4) direct activation of CFTR. MATERIALS AND METHODS cRNA-microinjected Xenopus laevis oocytes were perfused with diverse compounds that examined these pathways of natriuretic peptide signaling. RESULTS AND DISCUSSION ANP stimulated the shark CFTR (sCFTR)-mediated chloride conductance and this activation was inhibited by H-89, a specific inhibitor of PKA. After co-expression of the CNP receptor (NPR-B), sCFTR became stimulatable by CNP and was similarly inhibited by H-89, pointing to cross-activation of PKA. 8-pCPT-cGMP, a relatively cGKII-selective cGMP, failed to stimulate sCFTR. Another membrane-permeable and non-hydrolyzable analog of cGMP, 8-Br-cGMP, stimulated CFTR only at millimolar concentrations, consistent with cross-activation of PKA. The PDE inhibitors EHNA, rolipram, cilostamide, and amrinone did not significantly increase chloride conductance, arguing against a significant role for PDE2, PDE3 and PDE4 signaling in the oocyte. Sildenafil, a PDE5 inhibitor, caused a partial activation of sCFTR channels and this effect was again inhibited by H-89. CONCLUSION From these experiments we conclude that in the Xenopus oocyte system, natriuretic peptides, 8-Br-cGMP, and PDE5 inhibitors activate CFTR by cross-activation of PKA.
منابع مشابه
Regulation of CFTR chloride channel trafficking by Nedd4-2: role of SGK1
Introduction: The cystic fibrosis transmembrane conductance regulator (CFTR) chloride (Cl−) channel is an essential component of epithelial Cl− transport systems in many organs. CFTR is mainly expressed in the lung and other tissues, such as testis, duodenum, trachea and kidney. The ubiquitin ligase neural precursor cells expressed developmentally down-regulated protein 4-2 (Nedd4-2...
متن کاملFunctional Interaction between CFTR and the Sodium-Phosphate Co-Transport Type 2a in Xenopus laevis Oocytes
BACKGROUND A growing number of proteins, including ion transporters, have been shown to interact with Cystic Fibrosis Transmembrane conductance Regulator (CFTR). CFTR is an epithelial chloride channel that is involved in Cystic Fibrosis (CF) when mutated; thus a better knowledge of its functional interactome may help to understand the pathophysiology of this complex disease. In the present stud...
متن کاملThe S362A mutation block ROMK2 (Kir1.1b) endocytosis in Xenopus laevis oocyte membrane .
Abstract The S362A mutation block ROMK2 (Kir1.1b) endocytosis in Xenopus laevis oocyte membrane . Saeed Hajihashemi1 , 1-Assistant professor, PhD in Physiology, Department of Physiology, School of Medical science, Arak University of Medical Sciences. Introduction: ROMK channel is localized on the apical membrane of the nephron. Recent studies suggest that endocytosis of ROMK chan...
متن کاملAdenine nucleotide-induced activation of adenosine A(2B) receptors expressed in Xenopus laevis oocytes: involvement of a rapid and localized adenosine formation by ectonucleotidases.
We recently demonstrated that extracellular ATP effectively activates adenosine (Ade) A(2B) receptors indirectly through a localized rapid conversion to Ade by ectonucleotidases on the membrane surface of C6Bu-1 rat glioma cells. These responses were observed even in the presence of adenosine deaminase (ADA). Here, we demonstrate that such responses indeed occur in A(2B) receptor-expressing Xen...
متن کاملExpression of hsp90 Alpha and hsp90 Beta during Xenopus laevis Embryonic Development
Background: Members of the eukaryotic Hsp90 family function as important molecular chaperones in the assembly, folding and activation of cellular signaling in development. Two hsp90 genes, hsp90 alpha and hsp90 beta, have been identified in fish and homeothermic vertebrates but not in poikilothermic vertebrates. In the present study, the expression of hsp90 alpha and hsp90 beta genes in Xenopus...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of receptor and signal transduction research
دوره 35 5 شماره
صفحات -
تاریخ انتشار 2015